

STRUCTURAL PAVEMENT DESIGN

Using Recycled In-place Pavement Layers TxDOT Perspective

Outline

1 Basic Design Concepts	3-7
2 MODULUS 6.1 Structural Evaluation	8-15
3 FPS 21 Design - General	16-23
4 FPS 21 Design – Recycling Inputs	24-30
5 Issues & Gaps in Knowledge	31-32

- TxDOT uses a rudimentary mechanistic-empirical design procedure where materials are characterized by their modulus and Poisson's ratio at a design temperature of 77F.
 - Current version of design software is FPS 21
 - Traffic Loading in terms of cumulative 18-kip ESALs
 - No environmental inputs
 - Performance equation tied to deterioration in SI, initial deflection index and cumulative traffic loading.

- The layer modulus is preferably acquired by back-calculation using measured deflections.
 - 9,000-lb dynamic load is imparted to the pavement surface to simulate truck wheel load (one-half of a standard 18kip axle)
 - MODULUS 6.1 is used to perform back-calculation
 - Average pavement layer thicknesses must be measured/assumed.

The Falling Weight Deflectometer (FWD)

- Other Non-destructive tests
 - GPR
 - DCP
- Field Samples:
 - Coring
 - Auguring/Spot Milling
 - Lab Tests (AC content, gradations, stabilization series, mix design)

MODULUS 6.1 Structural Evaluation of Existing Pavement

MODULUS

Windows 7 or Above

Version 6.1.0

Copyright: Texas Transportation Institute Texas Dept. of Transportation

Warning: Do Not Make Illegal Copies of This Program.

MODULUS Remaining Life

FWD file name: E:\FWD\sat\SH85\before rehab\SH00	35K6.FWD				_
Input FWD Data <u>D</u> ata Analysis <u>P</u> ostprocessing	Help				
Read FWD Drop Select Stat. Select	emaining Life Backcalculati	on Segmentation	Chart Output	View Comment	Exit Program
B. Remaining Life Analysis Screen	\checkmark			—X —	
Pavement District 15 + San Antonio County 83 + FRIO Highway SH 85 Month of FWD Test 5 +	FWD FWD	Pavement Survey Number of Lanes ACP Thickness (in) Average Rut Depth Alligator Cracking (3	2 3 (in) 0.7 %) 20.0		
FWD Test Temp, Start (F') 90 En	d (F') 100	20 Year 18 KIPs (m	illions) 12		
0.0 12.0 24.0 36.0 48.0	60.0 72.0	Ē	<u>}</u> un <u>E</u> xit		

- Use non-backcalculated indices to:
 - Make rough estimates of remaining life in terms of fatigue cracking and full-depth rutting
 - Need estimate of current distress
 - 20-year cumulative ESALs
 - Locate problematic layers
- A screening tool to determine <u>level</u> of rehabilitative effort

File Font	Color E	vit										
<u>ine</u> <u>r</u> ome		1 1 1					1					
🛎 🛃 🖾	🖨 F	× A	(*)	<u> </u>		¶⊒ C≞						
			د بد									
			*	RELA	APS	*						
	TTI FLE	XIBLE D	AVEMENT	DEFLEC.	FION BA	ASIN A	NALYSI	5 PRO	GRAM	1		
FWD TEST	ED FILE	NAME :	E:\FWI)\sat\SH	85\befc	ore						
DISTRICT		:	155	San Anton	nio	AS	PH. TH	ICKNE	SS	: 3	8.00	
COUNTY		=	72	TASCOSA		MO	NTH TES	STED		: 14	IAY	
HIGHWAY		-	SH			DE	SIGN LO	DAD (lbs)	: 9	000	
TEMPERATU	URE("F)	start:	96.3	knd: 100	0.0	20	year :	18 KI	.P(m)	=	12.00	,
AVERAGE I	RUT DEPI	H(in):	20.0			LA	NES	0 10	24	200	2	72
ALLIGATO	R CRACKI		20.0				NSORS:		24	30 4		12
						ASPH	DESIG	N I	AYER	ε	REMA	INING
	** NORM	ALIZED	DEFLECT	ION (mi)	ls) **	TEMP	SCI	STR	ENGT	THS	LIFE	(yrs)
STATION	R1	R2	R3	R4	R7	DEF F	MILS	UPR	LWR	SGR	RUT	CRK
3.101	53.38	24.66	9.01	4.75	1.80	96.3	22.00	VP	VP	PR	0-2	0-2
3.200	55.17	28.53	10.34	5.70	2.04	96.5	19.86	PR	VP	PR	0-2	0-2
3.300	57.84	30.14	12.02	6.31	2.20	96.7	20.56	VP	VP	VP DD	0-2	0-2
3.400	28 70	12 71	4 94	2 28	2.02	90.9	12 22	MD	MD	CD	0-2	0-2
3 601	18 25	9 65	4 4 9	2.20	1 13	97.3	6 31	GD	GD	GD	0-2	2-5
3.701	58.13	28.73	11.88	6.09	2.72	97.5	21.89	VP	VP	VP	0-2	0-2
3.819	65.55	30.81	13.61	7.39	2.69	97.6	26.12	VP	VP	VP	0-2	0-2
3.901	61.31	31.70	13.63	7.80	3.04	97.8	21.70	VP	VP	VP	0-2	0-2
4.000	52.19	26.68	12.31	7.09	2.62	98.0	18.71	PR	VP	VP	0-2	0-2
4.100	41.24	25.34	13.19	7.85	2.86	98.2	10.81	MD	VP	VP	0-2	0-2
4.200	66.25	35.34	14.00	7.01	2.43	98.4	22.26	VP	VP	VP	0-2	0-2
4.300	59.86	30.93	12.83	7.00	2.80	98.6	20.99	VP	VP	VP	0-2	0-2
4.402	42.75	21.89	9.93	5.28	1.96	98.8	25.04	PR	VP	PR	0-2	0-2
4.500	45 98	20.03	6 16	3 25	1 47	99.0	18 80	PP	VP	MD	0-2	0-2
4.700	23.80	10.44	3.43	1,82	0.85	99.4	9.96	GD	MD	VG	0-2	0-2
4.805	48.71	23.47	9.72	5.36	2.07	99.6	18.42	PR	VP	PR	0-2	0-2
4.900	47.29	23.56	9.28	4.79	1.77	99.8	17.12	PR	VP	MD	0-2	0-2
5.024	34.50	13.55	4.95	2.86	1.06	100.0	15.80	PR	MD	GD	0-2	0-2
MEAN:	50.65	24.72	9.88	5.30	2.02		19.22	PR	VP	PR		
STD DEV:	15.89	22.05	3.42	1.91	22.00		6.78					
VAR:		32.08			32.00							
* 0~2:Fail	led 2	~5:Prob	lem	5~10:OK	for No	w	10+:God	bd				

Flie view and Print

11

MODULUS Backcalculation

File View and Print

<u>File Font Color Exit</u>

22 H 5 F A 🕅 🖆 - Fa Ka 😪

TTI MODULUS ANALYSIS SYSTEM (SUMMARY REPORT) (Version 6.1)														
District: County : Highway/F		.49 fm00	99		Pavemer Base: Subbase Subgrad	nt: e: le:	Thicknes 6.0 12.0 8.0 91.1	ss(in) 00 00 00 18(by DB	M Mi 2	10DULI RANG 1 nimum 250,000 75,000 25,000 15,	E (psi) Maximum 1,200,000 2,000,000 75,000 000	Poisso H1 H2 H3 H4	n Ratio V : v = 0.3 : v = 0.2 : v = 0.3 : v = 0.4	7alue: 5 5 5 5 5
Station	Load (lbs)	Measu: R1	red Defle R2	ection (r R3	nils): R4	R5	R6	R7	Calculate SURF(E1)	ed Moduli v BASE(E2)	alues (ksi) SUBB(E3)): SUBG(E4)	Absolute ERR/Sens	Dpth to Bedrock
506.000	10,000	24.89	11.27	6.08	4.04	2.94	2.37	2.11	250.0	75.0	25.0	7.6	20.71	192.8 *
600.000	10,625	11.11	8.30	5.91	4.36	3.06	2.42	1.78	744.6	75.0	46.6	8.6	1.72	125.8 *
701.000	10,811	10.00	7.57	5.68	4.34	3.29	2.56	1.96	850.5	97.6	75.0	7.8	0.69	117.2 *
801.000	10,504	8.71	7.16	5.43	4.19	3.30	2.64	2.14	1200.0	139.4	50.0	7.5	1.90	169.5 *
903.000	10,384	10.81	8.15	5.63	4.35	3.46	2.46	2.03	709.3	75.0	75.0	7.6	1.90	95.9 *
1003.000	10,866	9.07	6.83	5.13	3.95	3.12	2.51	2.07	744.3	146.7	75.0	8.4	1.90	205.3 *
1104.000	10,745	9.51	7.49	5.77	4.37	3.31	2.54	2.02	1153.5	110.0	45.4	8.0	0.74	150.3
1206.000	10,734	8.30	6.95	5.50	4.27	3.28	2.50	1.89	1200.0	129.6	71.0	7.6	1.73	109.6 *
1310.000	10,877	6.76	5.94	4.49	3.87	2.98	2.36	1.77	1200.0	362.0	31.4	8.4	2.44	87.7 *
1404.000	10,471	9.28	6.93	5.43	4.07	3.06	2.38	2.20	650.2	167.9	36.3	8.7	1.38	180.5
1504.000	10,570	8.02	6.71	5.28	3.99	3.16	2.37	1.52	1200.0	144.9	64.8	7.9	1.92	79.6 *
1602.000	10,460	11.52	7.43	4.66	3.07	2.15	1.69	1.23	337.7	75.0	42.2	13.1	4.21	124.7 *
1724.000	10,263	12.43	6.91	4.48	2.87	1.95	1.43	1.17	250.0	75.0	35.1	14.8	3.32	109.1 *
1816.000	10,581	5,50	4.86	3,89	3,10	2.42	1,90	1.53	1200.0	508.5	25.0	10.2	2.44	136.5 *
1923.000	10,669	6.03	5.13	3,91	2.95	2.07	1.58	1.15	1200.0	211.9	41.1	13.3	3.91	111.5 *
2014.000	10,526	7.07	4.84	3.72	2.79	1.98	1.46	1.20	436.7	317.6	28.1	14.8	0.90	107.2
2101.000	10,723	8.04	5.58	3.88	2.74	1.98	1.43	1.07	783.8	100.4	75.0	14.3	0.64	101.1 *
2202.000	10,230	11.36	6.08	4.01	2.70	1.87	1.35	0.98	250.0	75.0	75.0	15.0	2.17	99.9 *
2302 000	10 811	6 79	5 03	3 85	2 89	2 17	1 68	1 28	1011 6	185 1	75 0	12 4	1 14	106.3 *
2402 000	10 800	7 41	5 37	4 02	2 91	2 14	1 72	1 25	903 4	145 5	75 0	12 5	2 26	178 5 *
2573 000	10 745	5 45	4 03	3 12	2 40	1 77	1 43	0 99	988 7	313 0	75 0	15 0	1 56	154 8 *
2700 000	10 450	9.23	7 19	5 48	4 16	3 15	2 39	1 85	925 4	136 6	33 5	8 5	0 68	124 8
2801 000	10 329	7 63	5 29	3 73	2 66	1 82	1 30	1 08	654 3	152.2	28.4	16.0	0.79	96.6
2952 000	10 592	0.00	6 20	4 42	2.00	2 29	1 76	1 40	1200 0	99 5	44.2	12 1	2 27	142 9 *
2000 000	0,002	6 59	4 90	2 55	2 54	1 00	1 26	1 06	1105 0	121 2	56 A	14 0	0.00	100 5
3055.000	9,003	6.00	4.30	3.33	2.34	1 04	1.30	1.00	1200.0	102 0	25.0	12.0	1 44	100.5
3401 000	9,650	13 82	8.06	4 52	2.73	1 79	1 32	1 03	250.0	75.0	25.0	13.7	9.97	91 4 *
				1.52	2.75			1.03		/0.0	20.0	10.0		
Mean:		9.25	6.49	4.64	3.42	2.53	1.94	1.51	840.4	159.2	50.2	11.2	2.80	117.2
Std. Dev:	:	3.80	1.52	0.87	0.71	0.61	0.50	0.43	353.1	104.3	20.0	3.0	4.02	29.2
Var Coeff	E(%):	41.03	23.45	18.66	20.72	24.28	25.58	28.82	42.0	65.5	39.8	27.3	143.61	24.9

- Layer Thickness at least 3.0-in
- 4-layer maximum limitation
 - Mathematical process: results may not always reflect reality
 - 4-layer solutions are often unreliable (high variability)
- Can not differentiate between <u>similar</u> layers adjacent/bonded together
 - Layer consolidation to determine "composite" modulus

- Length of Performance Period
 - Typically use staged construction
- Confidence/Reliability Level
- Change in Serviceability Index
- Cumulative Traffic Loading
- Layer Modulus/Allowable Thickness

FPS 21 Design Parameters That Affect Thickness

5 Inp	out Design Data			x
I	Basic Design Criteria		Traffic Data	
	LENGTH OF ANALYSIS PERIOD, (Year)	20	ADT, BEGINNING (VEH/DAY)	4950
Γ	MIN TIME TO FIRST OVERLAY, (Year)	12	ADT, END 20 YR (VEH/DAY)	7520
_	MIN TIME BETWEEN OVERLAYS, (Year)	8	18 kip ESAL 20 YR (1 DIR) (millions)	12.200
	DESIGN CONFIDENCE LEVEL 95.0%	C÷	AVG APP. SPEED TO OV. ZONE (mph)	80.
	INITIAL SERVICEABILITY INDEX	4.\$	AVG SPEED, OV. DIRECTION (mph)	80.
	FINAL SERVICEABILITY INDEX	2.5	AVG SPEED, NON-OV. DIRECTION (mph)	80.
	SERVICEABILITY INDEX AFTER OVERLAY	4.2	PERCENT ADT/HR CONSTRUCTION (%)	5.0
	DISTRICT TEMPERATURE CONSTANT ('F)	31	PERCENT TRUCKS IN ADT (%)	22.5
	INTEREST RATE (%)	7.0		
	Program Controls			
	MAX FUNDS /SQ. YD, INIT CONST	99.0		
	MAX THICKNESS, INIT CONST	69.0		
	MAX THICKNESS, ALL OVERLAYS	4.0	To Main Menu	

FPS 21 Materials Table and Design Type Selection

🗗 Input Design Data (Pavement Structure)			×
Construction & Mainttenance Data		Detour Design for Overlays	To Main Menu
MIN OVERLAY THICKNESS, (Inches)	1.5	DETOUR MODEL DURING OVERLAYS	Save to Default
OVERLAY CONST. TIME, HR/DAY	8.0	TOTAL NUMBER OF LANES(for two direction) 2	
ACP COMP. DENSITY, TONS/CY	1.98	NUM OPEN LANES, OVRLAY DIRECTION 1	Save Input File
ACP PRODUCTION RATE, TONS/HR	200.0	NUM OPEN LANES, NON-OV DIRECTION 1	
WIDTH OF EACH LANE, (Feet)	12.0	DIST. TRAFFIC SLOWED, OV DIR 0.5	
FIRST YEAR COST, RTN MAINT (\$)	200.0	DIST TRAFFIC SLOWED, NON-OV DIR 0.5	
ANN. INC. INCR IN MAINT COST (\$)	50.0		
LYR MATERIAL Design Type 4 ACP OVERLAY ASPH CONC PVMT BASE SUBGRADE(200)	. NAME	COST PER CY MODULUS E (ksi) POISN RATIO MIN DEPTH MAX DEPTH SALVAGE (%) 115.0 10.0 2.0 2.0 500.0 48.0 12 0.35 0.35 0.40 0.0 4 10.0 200.0 6.0 4 4 10.0 200.0 30.0 30.0 75.0 90.0	

FPS 21 Design Types

🗈 Input Design Data (Pavement Structure)				×
Construction & Mainttenance Data		Detour Design for Overlays		To Main Menu
MIN OVERLAY THICKNESS, (Inches)	1.5	DETOUR MODEL DURING OVERLAYS	1 🛨	Save to Default
OVERLAY CONST. TIME, HR/DAY	8.0	TOTAL NUMBER OF LANES(for two direction)	2 ≑	
ACP COMP. DENSITY, TONS/CY	1.98	NUM OPEN LANES, OVRLAY DIRECTION	1	Save Input File
ACP PRODUCTION RATE, TONS/HR	200.0	NUM OPEN LANES, NON-OV DIRECTION	1	
WIDTH OF EACH LANE, (Feet)	12.0	DIST. TRAFFIC SLOWED, OV DIR	0.5	
FIRST YEAR COST, RTN MAINT (\$)	200.0	DIST TRAFFIC SLOWED, NON-OV DIR	0.5	
ANN. INC. INCR IN MAINT COST (\$)	50.0			
Select Pavement Design Type				
O 1) SURFACE TREATED + FLEX BASE OVER SUB	GRADE	A E=500 ksi v=0.35 ACP OVERLAY		
O 2) ACP + FLEX BASE OVER SUBGRADE				
C 3) ACP + ASPH STAB BASE OVER SUBGRADE		B E=500 ksi v=0.35 ASPH CONC P\	/MT	
O 4) ACP + ASPH STAB BASE + FLEX BASE OVER	SUBGRADE			
O 5) ACP + FLEXIBLE BASE + STAB SBGR OVER SUBGRADE		C E=48 ksi v=0.35 BASE		
 6) OVERLAY DESIGN 				
C 7) USER DEFINED PAVEMENT (less than 7 layers)	:)	D E=16 ksi v=0.40 SUBGRADE(200)	
Exit Pavement Design Type Select	ion			

- Modified Texas Triaxial Check
 - Evaluate subgrade shear failure under single heavy wheel load
 - Design parameters are:
 - ATHWLD
 - Subgrade Texas Triaxial Class
- ME Checks for Full-depth Rutting and Fatigue Cracking
 - Various models, but all are very rudimentary
 - Linear Elastic Layer Theory
 - Not material specific
 - All based on # passes 18-kip axle load

The Modified Texas Triaxial Check

🗈 Texas Triaxial Design Check for Pavement - 1

The Heaviest Wheel Loads Daily (ATHWLD)

Percentage of Tandem Axles

Modified Cohesiometer Value (Cm)

Input Subgrade Texas Triaxial Class (TTC)

- O Option 1: Input TTC based on TEX-117-E
- Option 2: Enter soil PI to estimateTTC
- Option 3: Select TTC based on predominate soil type

12000.	(Њ)
50.	(%)
800.	Reference

5.42

27

Design OK !	
Modified Triaxial Thickness (inches)	17.11
Allowable Reduction (inches)	8.39
The FPS Design Thickness (inches)	18.00
Triaxial Thickness Required (inches)	25.50

Thick. (in) Modulus(ksi) Material Name v 4.00 500.0 0.35 ASPH CONC PVMT CIR Mix 4.00 160.0 0.35 10.00 45.0 Flex Base 0.30 SUBGRADE(200) 120.00 12.0 0.40

R Mix
ex Base
JBGRADE(200)

ASPH CONC PVMT

<u>P</u>rint

24

FPS 21 ME Checks

Mechanistic Design Check for Pavement - 1 x Thick. (in) Modulus(ksi) Material Name Vary Thickness ٧ ASPH CONC PVMT ASPH CONC PVMT 0.50 4.00 500.0 0.35 **CIR Mix** 4.00 160.0 0.35 CIR Mix 10.00 45.0 0.30 Flex Base \leftrightarrow SUBGRADE(200) 12.0 0.40 120.00 Flex Base Analysis Mode SUBGRADE(200 7.96E-02 f1 O Design O User Define 3.291 f2 $N_f = f_1(\varepsilon_t)^{-f_2} (E_1)^{-f_3}$.854 f3 $\overline{N_d} = f_4(\varepsilon_v)^{-f_5}$ 1.37E-09 f4 Run 4.477 f5 Exit

- The HIR process would typically be considered a "Pavement Preservation" technique –
 - Not a candidate for "structural design process"
 - However, typical design philosophy should still be used to determine whether the structure has adequate remaining life to consider PP viability.
 - Remaining Life Good or Very Good
 - Uniformity/composition of surface material
 - Use "Structural Overlay" design (Type 6) option and assign a design modulus to HIR layer (500 ksi unless better information available)

- Design Modulus?
 - Limited experience with product in Texas
 - One job from the early 90's on US 62 (Lubbock District) showed that a temperature corrected (77F) modulus was on the order of 150ksi
 - Uniformity/composition of bituminous material
- Use either a Type 4 Design format:
 - ACP surface/ST
 - CIR layer
 - Flex Base
 - Subgrade
- ... or Type 7 (User Defined) format.

FPS 21 User Defined Design Format

Iser Define Pavement

はもの時間でもない

Go Back							
Layer: 1	No	Material Type	2004 Specificatio	Design Modulus	Poisson' Ratio	Layer Type	
		SURFACE TREATMENT	Item 316, 318	200 ksi	0.35	AC Layer	
		DENSE-GRADED HMA Thin	Item 340, 341	500 ksi	0.35	AC Layer	
	3	DENSE-GRADED HMA Thick	Item 340, 341	650 ksi	0.35	AC Layer	
	4	PFC	Item 342	300 ksi	0.30	AC Layer	
ASPHALT TREATED BASE Modulus:400.0 ksi	5	PERFORMANCE MIX 3/4SF	Item 344	650 ~ 950 ksi	0.35	AC Layer	
Thickness from:4.0 to: 10.0 inches	6	PERFORMANCE MIX 1in SF	Item 344	650 ~ 950 ksi	0.35	AC Layer	
	7	STONE-MATRIX ASPHALT	Item 346	650 ~ 850 ksi	0.35	AC Layer	
	8	LIMEROCK ASPH PVMT	Item 330	200 ~ 350 ksi	0.35	AC Layer	
	9	HOT-MIX COLD-LAID ACP	Item 334	300 ~ 400 ksi	0.35	AC Layer	
FLEXIBLE BASE	1(RICH BOTTOM LAYER	Item 344	400 ~ 600 ksi	0.35	AC Layer	
Modulus:50.0 ksi Thickness from:6.0-to: 12.0 inches	11	FA or LFA STABILIZED	Item 265	50 ~ 150 ksi	0.35	Base Layer	
	12	ASPHALT TREATED BASE	Item 292	250 ~ 400 ksi	0.35	Base Layer	
	13	EMULS ASPH TRT BASE	Item 314	50 ~ 100 ksi	0.35	Base Layer	
	14	FLEXIBLE BASE	Item 247	40 ~ 70 ksi	0.35	Base Layer	
CURCEADE	15	LIME STABILIZED BASE	Item 260, 263	60 ~ 75 ksi	0.30 ~ 0.35	Base Layer	
Modulus:16.0 ksi Thialware form:200.0 km 200.0 instead	16	CEMENT STABILIZED BASE	Item 275, 276	80 ~ 150 ksi	0.20 ~ 0.30	Base Layer	
Thickness from 200.0 to. 200.0 inches	17	FA OR LIME-FLY ASH STAB	Item 265	30 ~ 45 ksi	0.30	SubBase Layer	
	18	LIME(CEMENT) STAB SUBG	Item 260, 275	30 ~ 45 ksi	0.30	SubBase Layer	
	19	EMULS ASPH TREAT SUBG	Item 314	30 ~ 45 ksi	0.35	SubBase Layer	
	20	SUBGRADE		16 ksi	0.40 ~ 0.45	Sub-Grade Layer	

- Design Modulus?
 - Experience shows highly variable, depending on:
 - Parent material & uniformity
 - Stabilizing Agent
 - Environment
 - Sophistication of Reclaimers
- Use either a Type 3 Design Format
 - ACP surface
 - Reclaimed/Stab. Base
 - Subgrade
- ... or Type 7 (User Defined), if 4 or more layers involved.

End Product In-place Variability

Stabilization Variability

Reclaimers

High Efficiency Reclaimer – Emulsion or Foam

- Better assessment of candidate jobs
- Better uniformity of construction
- Urgent need to move to a more mechanistic design procedure.
 - Need better materials characterization
 - Need to incorporate climate effects
 - Need to account for traffic loading in terms of load spectra
- TxDOT not likely to adopt AASHTO Pavement ME
 - 2006/2007 TxDOT Research Study
- TxDOT Research Program evaluating TxME
 - Hope to have limited implementation project approved in FY 15

TxME

